Cryptosporidium parvum vaccine candidates are incompletely modified with O-linked-N-acetylgalactosamine or contain N-terminal N-myristate and S-palmitate

نویسندگان

  • John R Haserick
  • Joshua A Klein
  • Catherine E Costello
  • John Samuelson
چکیده

Cryptosporidium parvum (studied here) and Cryptosporidium hominis are important causes of diarrhea in infants and immunosuppressed persons. C. parvum vaccine candidates, which are on the surface of sporozoites, include glycoproteins with Ser- and Thr-rich domains (Gp15, Gp40, and Gp900) and a low complexity, acidic protein (Cp23). Here we used mass spectrometry to determine that O-linked GalNAc is present in dense arrays on a glycopeptide with consecutive Ser derived from Gp40 and on glycopeptides with consecutive Thr derived from Gp20, a novel C. parvum glycoprotein with a formula weight of ~20 kDa. In contrast, the occupied Ser or Thr residues in glycopeptides from Gp15 and Gp900 are isolated from one another. Gly at the N-terminus of Cp23 is N-myristoylated, while Cys, the second amino acid, is S-palmitoylated. In summary, C. parvum O-GalNAc transferases, which are homologs of host enzymes, densely modify arrays of Ser or Thr, as well as isolated Ser and Thr residues on C. parvum vaccine candidates. The N-terminus of an immunodominant antigen has lipid modifications similar to those of host cells and other apicomplexan parasites. Mass spectrometric demonstration here of glycopeptides with O-glycans complements previous identification C. parvum O-GalNAc transferases, lectin binding to vaccine candidates, and human and mouse antibodies binding to glycopeptides. The significance of these post-translational modifications is discussed with regards to the function of these proteins and the design of serological tests and vaccines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of Cpgp40/15 in Toxoplasma gondii: a surrogate system for the study of Cryptosporidium glycoprotein antigens.

Cryptosporidium parvum is a waterborne enteric coccidian that causes diarrheal disease in a wide range of hosts. Development of successful therapies is hampered by the inability to culture the parasite and the lack of a transfection system for genetic manipulation. The glycoprotein products of the Cpgp40/15 gene, gp40 and gp15, are involved in C. parvum sporozoite attachment to and invasion of ...

متن کامل

Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells.

Cryptosporidiosis in humans is caused by the zoonotic pathogen Cryptosporidium parvum and the anthroponotic pathogen Cryptosporidium hominis. To what extent the recently recognized C. hominis species differs from C. parvum is unknown. In this study we compared the mechanisms of C. parvum and C. hominis invasion using a primary cell model of infection. Cultured primary bovine and human epithelia...

متن کامل

New cryptosporidium genotypes in HIV-infected persons.

Using DNA sequencing and phylogenetic analysis, we identified four distinct Cryptosporidium genotypes in HIV-infected patients: genotype 1 (human), genotype 2 (bovine) Cryptosporidium parvum, a genotype identical to C. felis, and one identical to a Cryptosporidium sp. isolate from a dog. This is the first identification of human infection with the latter two genotypes.

متن کامل

Protein fatty acid acylation: enzymatic synthesis of an N-myristoylglycyl peptide.

Incubation of Saccharomyces cerevisiae strain JR153 with either [3H]myristate or [3H]palmitate demonstrates the synthesis of proteins that contain covalently bound fatty acids. A unique set of proteins is labeled by each fatty acid. Detailed analysis of a 20-kDa protein labeled with myristic acid demonstrates that myristate is linked to the amino-terminal glycine. We describe an enzymatic activ...

متن کامل

The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin.

Erythropoietin (EPO) plays a critical role in stimulating the proliferation and differentiation of erythroid precursor cells. EPO is heavily glycosylated with three asparagine (N)-linked tetraantennary oligosaccharides that may contain N-acetyl-lactosamine repeats and a single serine (O)-linked oligosaccharide. EPO expressed in Chinese hamster ovary cells exhibits biologic properties and amino ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017